Since 1905, G&W has provided custom power solutions to utilities and electric power users around the world. G&W has a wide selection of reliable, quality switching and fault interrupting products to meet the most stringent customer requirements. Whether the application involves load switching, line sectionalizing, fault interruption or distribution automation, G&W can provide a solution for distribution system switching and protection. When specifying switchgear, consider these features:

MAXIMUM OPERATOR SAFETY
SF₆ gas is a nontoxic, nonflammable switching dielectric. Dead-front switch construction eliminates any exposed live parts. Spring-assisted mechanisms assure quick-make, quick-break operation. Viewing windows permit visual verification of open or closed contacts. Tamper-resistant enclosures utilize penta-head bolts and padlocking provisions. Motor actuators are available permitting remote operation. The result is maximum operator safety.

MINIMAL MAINTENANCE
G&W SF₆ switches are corrosion-resistant, totally sealed and factory filled. No more field adjustments of critical contact areas or concerns with environmental contamination or intrusions. A periodic check of the pressure gauge is all that is required. Galvanneal type enclosures assure maximum corrosion resistance.

APPLICATION VERSATILITY

Multi-way Configurations — Switches are available for either two-position or three-position (incorporating an integral ground, tie or test position) switching. Single or multiple sources can feed multiple loads. Bus tie configurations are available permitting multiple sources to feed different loads within the same switch.

Mounting Flexibility — Horizontal and vertical configurations are available with operating apparatus accessible from the front, top or side compartments. Enclosures are removable for easy cable installation or field replacement.

Bushing Variety — Many bushing styles are available including an exclusive disconnectable style permitting field changeout. Cable entry can be bottom, front, back or side.

Visible Break — Load break switches can incorporate a visible break of all three phases.

Overcurrent Protection — Fusing or electronically controlled, resettable vacuum interrupters are available.

Smart Grid / Lazer Solutions — Complete SCADA distribution automation and Smart Grid solutions are available including automatic transfer. G&W’s Lazer distribution automation systems provide pre-engineered, time-proven solutions for automatic power restoration.
PUFFER VACUUM INTERRUPTERS

G&W load and fault interrupting combination switches combine the total cost and operating benefits of fuseless, electronically controlled, resettable overcurrent protection with the safety and maintenance benefits of a totally sealed, dead-front, SF₆ insulated device. The switches are designed for automatic single or three phase fault interruption with manual load break capabilities for systems through 35kV, 630A continuous. Ratings to 900A continuous are available on certain models. Single side access designs are available for confined space applications.

FEATURES

Operator Safety — G&W combination switches are totally sealed, dead-front and insulated with nonflammable, nontoxic SF₆ gas. Operators are spring assisted for positive quick-make, quick-break operation. A trip-free mechanism permits interruption independent of the operating handle if closing into a fault. Viewing windows permit visible indication of interrupter contact position.

Minimal Maintenance — No more routine inspections or dielectric testing as with oil gear. No more contact contamination, rodent problems or insulator maintenance as with air gear. A periodic check of the gas pressure gauge is all that is required.

Three Phase Tripping — No more single phasing problems. Simultaneous three phase tripping is available through the electronics and with three phase operating handles for manual operation and reset.

Protection Curve Compatibility — G&W solid state electronic controls permit extremely accurate, consistent protection curve characteristics compared to conventional fuses. The exclusive controls can emulate the most common time current curves (TCC) for power fuses, relays and fuse links (oil fuse cutouts). Optional controls can provide ground trip, inrush restraint and adjustable time delay capability.

Fully Tested — Switches are designed and tested per applicable sections of IEEE C37.72, C37.74 C37.60, and IEC 265 standards.

APPLICATIONS

G&W combination switches provide a direct replacement for power fused air and vacuum-in-oil switchgear. Some ideal applications include:

Transformer and Motor Protection — The three phase trip feature and high continuous current make PVIs ideal for protecting three phase motors and transformers through 600A continuous.

Loop and Tap Switching — Standard 630A and optional 900A loop switching is accomplished using the latest puffer technology. Tap switching through 630A and up to 25kA symmetric fault protection is accomplished using resettable, electronically controlled vacuum interrupters. The vacuum interrupters also function as load break switches.

Automatic Transfer — For critical load applications, switches can be supplied with an automatic transfer control package to provide automatic transfer from one source to another to minimize downtime.

Smart Grid / Lazer Solutions — Switches can be supplied with motor actuators on both the line and load side providing remote control capability. Various control packages including portable controls are available.

For Smart Grid applications, G&W works with the top control manufacturers of the industry, including Schweitzer and GE, to match the right control for the job. For automatic power restoration, G&W’s Lazer solution provides a pre-engineered, field proven system which can be pre-assembled and factory tested prior to shipment.

Metalclad Switchgear Replacement — Front access designs can provide up to a 900A rated main bus with up to six 25kA symmetric protected load ways for a compact, economical alternative to metalclad and metal enclosed line-ups. All switches can be equipped with SEL relays, providing flexibility, as well as complete remote monitoring and control capabilities.
LOAD AND FAULT INTERRUPTING SWITCHES

TWO POSITION, FRONT ACCESS, PUFFER VACUUM INTERRUPTERS

ROTARY PUFFER (RPFI)
Diagonal bushing configurations. Provides smallest footprint with three phase interrupting.

Load break switch (RP) ratings
- Maximum design voltage, kV: 15.5...27
- Voltage class, kV: 15...25
- Impulse level (BIL), kV: 110...125
- One minute withstand, AC kV: 35...60
- One minute withstand, Production test rating, AC kV: 34...40
- 15 minute withstand, DC kV: 53...78
- Continuous and load break current, Amps: 630...630
- Momentary current, kA asym: 25.6...20
- Fault-close current, (3 times), kA asym: 25.6...20
- One second current, kA sym: 16...12.5
- Operations load interrupting endurance (15kV), at 600A: 500...350
- Mechanical endurance, operations: 2000...2000

Fault interrupter (FI) ratings
- Maximum design voltage, kV: 15.5...27
- Voltage class, kV: 15...25
- Impulse level (BIL), kV: 110...125
- One minute withstand, AC kV: 50...60
- One minute withstand, Production test rating, AC kV: 34...40
- 15 minute withstand, DC kV: 53...78
- Continuous and load break current, Amps: 630...630
- Symmetrical interrupting rating, kA: 12.5...12.5

IEEE C37.60 Fault Interrupting Duty
Total number of fault interruptions: 116

<table>
<thead>
<tr>
<th>Percent of Maximum Interrupting Rating</th>
<th>Approx. Interrupting Current, Amps</th>
<th>No. of Fault Interruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20%</td>
<td>2,000</td>
<td>44</td>
</tr>
<tr>
<td>45-55%</td>
<td>6,000</td>
<td>56</td>
</tr>
<tr>
<td>90-100%</td>
<td>12,500</td>
<td>16</td>
</tr>
</tbody>
</table>

Manually operated RPFI-6F shown.

Automated RPFI-9F shown.

Load break operating handle.

Fault interrupter operating handle.

Fault interrupter position indicator.
Load and Fault Interrupting Switches

Two Position, Front Access, Puffer Vacuum Interrupters

*For RPFI styles:
 height = 59" (1499mm),
 depth = 49" (1245mm).

*For LPFI styles:
 height = 61" (1549mm),
 depth = 54" (1372mm).

*For PNI styles:
 height = 65" (1651mm),
 depth = 55" (1397mm).

*For PVI styles:
 height = 57" (1448mm),
 depth = 54.5" (1384mm).

For typical specifications, go to www.gwelec.com. For contact principle, see pages 32-35.

<table>
<thead>
<tr>
<th>Model</th>
<th>One-line Diagram</th>
<th>Voltage (kV)</th>
<th>Catalog Number</th>
<th>Approximate Width in. (mm)*</th>
<th>Wt. w/SF₆ lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4F</td>
<td>![Diagram 4F]</td>
<td>15</td>
<td>PNI20-376-25-4F</td>
<td>47.5 (1207)</td>
<td>1500 (682)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>PFI20-376-12-4F</td>
<td>38.2 (969)</td>
<td>1200 (545)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>PVI20-386-12-4F</td>
<td>54.8 (1392)</td>
<td>1600 (727)</td>
</tr>
<tr>
<td>5F</td>
<td>![Diagram 5F]</td>
<td>15</td>
<td>PNI20-386-25-4F</td>
<td>47.5 (1207)</td>
<td>1500 (682)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>PFI20-386-12-4F</td>
<td>38.2 (969)</td>
<td>1200 (545)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>PVI20-386-12-4F</td>
<td>54.8 (1392)</td>
<td>1600 (727)</td>
</tr>
<tr>
<td>6F</td>
<td>![Diagram 6F]</td>
<td>15</td>
<td>RPFI21-376-12-5F</td>
<td>38.2 (969)</td>
<td>1200 (545)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>LPFI21-376-12-5F</td>
<td>43.5 (1111)</td>
<td>1475 (670)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>PNI21-386-25-5F</td>
<td>47.5 (1207)</td>
<td>1550 (705)</td>
</tr>
<tr>
<td>7F</td>
<td>![Diagram 7F]</td>
<td>15</td>
<td>RPFI21-386-12-5F</td>
<td>38.2 (969)</td>
<td>1200 (545)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>LPFI21-386-12-5F</td>
<td>43.5 (1111)</td>
<td>1475 (670)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>PNI21-396-12-5F</td>
<td>54.8 (1392)</td>
<td>1600 (727)</td>
</tr>
<tr>
<td>9F</td>
<td>![Diagram 9F]</td>
<td>15</td>
<td>RPFI22-376-12-7F</td>
<td>47.5 (1207)</td>
<td>1500 (682)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>LPFI22-376-12-7F</td>
<td>54.8 (1392)</td>
<td>1600 (727)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>PNI22-396-12-7F</td>
<td>73.5 (1867)</td>
<td>2050 (932)</td>
</tr>
</tbody>
</table>

For typical specifications, go to www.gwelec.com. For contact principle, see pages 32-35.
LOAD AND FAULT INTERRUPTING SWITCHES

TWO POSITION, FRONT ACCESS, PUFFER VACUUM INTERRUPTERS

CONTINUED

For typical specifications, go to www.gwelec.com. For contact principle, see pages 32-35.

*For RPFI styles:
 height = 59" (1499mm),
 depth = 49" (1245mm).

For LPFI styles:
 height = 61" (1549mm),
 depth = 54" (1372mm).

For PNI styles:
 height = 65" (1651mm),
 depth = 55" (1397mm).

For PVI styles:
 height = 57" (1448mm),
 depth = 54.5" (1384mm).

Front Access Puffer Vacuum Interrupters

<table>
<thead>
<tr>
<th>Model</th>
<th>One-line Diagram</th>
<th>Voltage (kV)</th>
<th>Catalog Number</th>
<th>Weight Width (in. (mm))</th>
<th>Weight w/SF6 (lbs (kg))</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPFI43-376-12-11F</td>
<td>11F</td>
<td>62.1 (1578)</td>
<td>1800 (817)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-376-12-11F</td>
<td>11F</td>
<td>68.8 (1746)</td>
<td>2075 (943)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-376-25-11F</td>
<td>11F</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV43-376-12-11F</td>
<td>11F</td>
<td>79.8 (2026)</td>
<td>2200 (1000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI43-366-12-11F</td>
<td>25</td>
<td>62.1 (1578)</td>
<td>1800 (817)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-366-12-11F</td>
<td>25</td>
<td>68.8 (1746)</td>
<td>2075 (943)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-366-25-11F</td>
<td>25</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV43-366-12-11F</td>
<td>25</td>
<td>79.8 (2026)</td>
<td>2200 (1000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-396-12-11F</td>
<td>35</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV43-396-12-11F</td>
<td>35</td>
<td>86.0 (2184)</td>
<td>2450 (1114)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI43-376-12-12F</td>
<td>12F</td>
<td>62.1 (1578)</td>
<td>1800 (817)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-376-12-12F</td>
<td>12F</td>
<td>67.8 (1721)</td>
<td>2150 (977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-376-25-12F</td>
<td>12F</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-376-12-12F</td>
<td>12F</td>
<td>96.8 (2459)</td>
<td>2600 (1182)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI43-386-12-12F</td>
<td>12F</td>
<td>62.1 (1578)</td>
<td>1800 (817)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-386-12-12F</td>
<td>12F</td>
<td>67.8 (1721)</td>
<td>2150 (977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-386-25-12F</td>
<td>12F</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-386-12-12F</td>
<td>12F</td>
<td>95.0 (2413)</td>
<td>2600 (1182)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-396-12-12F</td>
<td>12F</td>
<td>77.5 (1969)</td>
<td>2400 (1091)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-396-12-12F</td>
<td>12F</td>
<td>121.0 (3073)</td>
<td>3000 (1364)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI43-376-12-43F-BT</td>
<td>43F</td>
<td>74.1 (1883)</td>
<td>2100 (953)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-376-12-43F-BT</td>
<td>43F</td>
<td>80.2 (2037)</td>
<td>2300 (1045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-376-25-43F-BT</td>
<td>43F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-376-12-43F-BT</td>
<td>43F</td>
<td>101 (2565)</td>
<td>2700 (1227)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI43-386-12-43F-BT</td>
<td>43F</td>
<td>74.2 (1885)</td>
<td>2250 (1023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI43-386-12-43F-BT</td>
<td>43F</td>
<td>80.2 (2037)</td>
<td>2300 (1045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-386-25-43F-BT</td>
<td>43F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-386-12-43F-BT</td>
<td>43F</td>
<td>101 (2565)</td>
<td>2700 (1227)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI43-396-12-43F-BT</td>
<td>43F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI43-396-12-43F-BT</td>
<td>43F</td>
<td>116 (2946)</td>
<td>3000 (1364)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI51-376-12-51F</td>
<td>51F</td>
<td>74.1 (1883)</td>
<td>2100 (953)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI51-376-12-51F</td>
<td>51F</td>
<td>80.2 (2037)</td>
<td>2300 (1045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI51-376-25-51F</td>
<td>51F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI51-376-12-51F</td>
<td>51F</td>
<td>101 (2565)</td>
<td>2700 (1227)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPFI51-386-12-51F</td>
<td>51F</td>
<td>74.2 (1885)</td>
<td>2250 (1023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPFI51-386-12-51F</td>
<td>51F</td>
<td>80.2 (2037)</td>
<td>2300 (1045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI51-386-25-51F</td>
<td>51F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI51-386-12-51F</td>
<td>51F</td>
<td>101 (2565)</td>
<td>2700 (1227)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNI51-396-12-51F</td>
<td>51F</td>
<td>92.5 (2350)</td>
<td>2750 (1250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVI51-396-12-51F</td>
<td>51F</td>
<td>116 (2946)</td>
<td>3000 (1364)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Front Access Puffer Vacuum Interrupters

Two Position, Front Access, Puffer Vacuum Interrupters

For RPFI styles:
- height = 59" (1499mm),
- depth = 49" (1245mm).

For LPFI styles:
- height = 61" (1549mm),
- depth = 54" (1372mm).

For PNI styles:
- height = 65" (1651mm),
- depth = 55" (1397mm).

For PVI styles:
- height = 57" (1448mm),
- depth = 54.5" (1384mm).

Table: Front Access Puffer Vacuum Interrupters

<table>
<thead>
<tr>
<th>Model</th>
<th>One-line Diagram</th>
<th>Voltage (kV)</th>
<th>Catalog Number</th>
<th>Width in. (mm)*</th>
<th>Wt. w/SF₆ lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPI52-376-12-52F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2100 (953)</td>
<td></td>
</tr>
<tr>
<td>LPI52-376-12-52F</td>
<td></td>
<td>80.3 (2038)</td>
<td>25</td>
<td>2525 (1148)</td>
<td></td>
</tr>
<tr>
<td>PNI52-376-25-52F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2800 (1273)</td>
<td></td>
</tr>
<tr>
<td>PV52-376-12-52F</td>
<td></td>
<td>109.3 (2776)</td>
<td></td>
<td>2900 (1318)</td>
<td></td>
</tr>
<tr>
<td>RPI52-386-12-52F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2100 (953)</td>
<td></td>
</tr>
<tr>
<td>LPI52-386-12-52F</td>
<td></td>
<td>80.3 (2038)</td>
<td>25</td>
<td>2525 (1148)</td>
<td></td>
</tr>
<tr>
<td>PNI52-386-25-52F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2800 (1273)</td>
<td></td>
</tr>
<tr>
<td>PV52-386-12-52F</td>
<td></td>
<td>109.3 (2776)</td>
<td></td>
<td>2900 (1318)</td>
<td></td>
</tr>
<tr>
<td>RPI52-396-12-52F</td>
<td></td>
<td>92.5 (2350)</td>
<td>25</td>
<td>2800 (1273)</td>
<td></td>
</tr>
<tr>
<td>PNI52-396-12-52F</td>
<td></td>
<td>133.5 (3391)</td>
<td>35</td>
<td>3250 (1477)</td>
<td></td>
</tr>
<tr>
<td>RPI53-376-12-53F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2100 (953)</td>
<td></td>
</tr>
<tr>
<td>LPI53-376-12-53F</td>
<td></td>
<td>80.8 (2051)</td>
<td>25</td>
<td>2450 (1114)</td>
<td></td>
</tr>
<tr>
<td>PNI53-376-25-53F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2750 (1250)</td>
<td></td>
</tr>
<tr>
<td>PV53-376-12-53F</td>
<td></td>
<td>101 (2565)</td>
<td></td>
<td>2700 (1227)</td>
<td></td>
</tr>
<tr>
<td>RPI53-386-12-53F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2100 (953)</td>
<td></td>
</tr>
<tr>
<td>LPI53-386-12-53F</td>
<td></td>
<td>80.8 (2051)</td>
<td>25</td>
<td>2450 (1114)</td>
<td></td>
</tr>
<tr>
<td>PNI53-386-25-53F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2750 (1250)</td>
<td></td>
</tr>
<tr>
<td>PV53-386-12-53F</td>
<td></td>
<td>101 (2565)</td>
<td></td>
<td>2700 (1227)</td>
<td></td>
</tr>
<tr>
<td>PNI53-396-12-53F</td>
<td></td>
<td>92.5 (2350)</td>
<td>25</td>
<td>2750 (1250)</td>
<td></td>
</tr>
<tr>
<td>PVI53-396-12-53F</td>
<td></td>
<td>116 (2946)</td>
<td>35</td>
<td>3000 (1364)</td>
<td></td>
</tr>
<tr>
<td>RPI54-376-12-54F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2000 (908)</td>
<td></td>
</tr>
<tr>
<td>LPI54-376-12-54F</td>
<td></td>
<td>81.3 (2064)</td>
<td>25</td>
<td>2400 (1091)</td>
<td></td>
</tr>
<tr>
<td>PNI54-376-25-54F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2650 (1205)</td>
<td></td>
</tr>
<tr>
<td>PV54-376-12-54F</td>
<td></td>
<td>93 (2362)</td>
<td></td>
<td>2500 (1136)</td>
<td></td>
</tr>
<tr>
<td>RPI54-386-12-54F</td>
<td></td>
<td>74.1 (1883)</td>
<td>15</td>
<td>2000 (908)</td>
<td></td>
</tr>
<tr>
<td>LPI54-386-12-54F</td>
<td></td>
<td>81.3 (2064)</td>
<td>25</td>
<td>2400 (1091)</td>
<td></td>
</tr>
<tr>
<td>PNI54-386-25-54F</td>
<td></td>
<td>92.5 (2350)</td>
<td>35</td>
<td>2650 (1205)</td>
<td></td>
</tr>
<tr>
<td>PV54-386-12-54F</td>
<td></td>
<td>93 (2362)</td>
<td></td>
<td>2500 (1136)</td>
<td></td>
</tr>
<tr>
<td>PNI54-396-12-54F</td>
<td></td>
<td>92.5 (2350)</td>
<td>25</td>
<td>2650 (1205)</td>
<td></td>
</tr>
<tr>
<td>PVI54-396-12-54F</td>
<td></td>
<td>98.5 (2502)</td>
<td>35</td>
<td>2700 (1227)</td>
<td></td>
</tr>
<tr>
<td>RPI62-376-12-62F</td>
<td></td>
<td>86.1 (2188)</td>
<td>15</td>
<td>2400 (1089)</td>
<td></td>
</tr>
<tr>
<td>LPI62-376-12-62F</td>
<td></td>
<td>92.3 (2343)</td>
<td>25</td>
<td>2800 (1273)</td>
<td></td>
</tr>
<tr>
<td>PNI62-376-25-62F</td>
<td></td>
<td>107.5 (2731)</td>
<td>35</td>
<td>3300 (1500)</td>
<td></td>
</tr>
<tr>
<td>PV62-376-12-62F</td>
<td></td>
<td>107.5 (2731)</td>
<td></td>
<td>3300 (1500)</td>
<td></td>
</tr>
</tbody>
</table>

*For RPFI styles:
 - height = 59" (1499mm),
 - depth = 49" (1245mm).

For LPFI styles:
 - height = 61" (1549mm),
 - depth = 54" (1372mm).

For PNI styles:
 - height = 65" (1651mm),
 - depth = 55" (1397mm).

For PVI styles:
 - height = 57" (1448mm),
 - depth = 54.5" (1384mm).

For typical specifications, go to www.gwelec.com. For contact principle, see pages 32-35.
LOAD AND FAULT INTERRUPTING SWITCHES

TWO POSITION, FRONT ACCESS, PUFFER VACUUM INTERRUPTERS

CONTINUED

For typical specifications, go to www.gwelc.com. For contact principle, see pages 32-35.

*For RPFI styles:
 height = 59" (1499mm),
 depth = 49" (1245mm).

For LPFI styles:
 height = 61" (1549mm),
 depth = 54" (1372mm).

For PNI styles:
 height = 65" (1651mm),
 depth = 55" (1397mm).

For PVI styles:
 height = 57" (1448mm),
 depth = 54.5" (1384mm).

FRONT ACCESS PUFFER VACUUM INTERRUPTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>One-line Diagram</th>
<th>Voltage (kV)</th>
<th>Catalog Number</th>
<th>Approximate</th>
<th>Width in. (mm)*</th>
<th>Wt. w/SF₆ lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Width in. (mm)*</td>
<td>Wt. w/SF₆ lbs (kg)</td>
</tr>
</tbody>
</table>

For typical specifications, go to www.gwelc.com. For contact principle, see pages 32-35.

*For RPFI styles:
 height = 59" (1499mm),
 depth = 49" (1245mm).

For LPFI styles:
 height = 61" (1549mm),
 depth = 54" (1372mm).

For PNI styles:
 height = 65" (1651mm),
 depth = 55" (1397mm).

For PVI styles:
 height = 57" (1448mm),
 depth = 54.5" (1384mm).
MODEL FI AND NI VACUUM INTERRUPTER MECHANISM PRINCIPLE

Add to appropriate switch specifications.

Ratings for FI modules available through 25kV, with 12.5kA symmetric interrupting. Ratings for NI modules available through 35kV, with 12.5kA, 20kA and 25kA symmetric interrupting.

The model FI and NI vacuum interrupters consist of three vacuum bottles mechanically linked to a single spring-assisted operating mechanism. Once initiated, the interrupting time of the vacuum bottles is approximately 3 cycles (50 millisecond). A position indicator (open-green, closed-red) driven by the operating mechanism and is visible through a viewing window for positive contact position. The mechanical linkage assembly provides a "trip-free" operation permitting the vacuum interrupter to interrupt independent of the operating handle if closing into a faulted circuit.

The control monitors the current on each phase and activates a trip solenoid to open the three vacuum bottles if an overcurrent on any phase is sensed. The control is self-powered by current transformers mounted inside the sealed switch tank. No external power source is required. Load current is required for the control to be activated unless the optional remote power feature is specified. The trip selector is used to select the time-current response curve for the tap circuits. The time-current response curves are chosen with the phase selector switches on the face plate of the control. Selection of time-current characteristics may be made under load or no-load conditions with continuous current ranges in twelve selectable levels.

The manual trip and reset of the vacuum interrupter is accomplished through a single handle operating all three phases simultaneously.
Two Position, Rotary Puffer Style

G&W’s patented Rotary Puffer (RP) style, two-position switches are ideal for manual load break switching, automatic transfer or automated sectionalizing applications rated through 25kV, 630A continuous. This module allows for the smallest switch footprint. Switches are tested to 500 loadbreak operations at 15kV and 350 operations at 25kV. Switches also tested to 2000 mechanical operations. Current limiting fuses or electronically controlled vacuum interrupters can be added for overcurrent protection. G&W’s RP style contact system provides extremely efficient, high speed arc extinction for maximum service life.

A. The stationary contacts and the multi-chamber rotor (an assembly of interlocking parts which form a rotational framework including moving contacts) are housed in a clear cylindrical shell. The stationary contacts are supported independent of the cable entrance bushings, eliminating possible misalignment resulting from tank deflections. Tank deflections are caused by normal tank pressure variance due to ambient temperature fluctuations. Each rotating contact simultaneously disengages from two stationary contacts, providing two break points per phase. This provides improved interrupting capability as compared to single break contact systems.

B. As the rotor tube assembly turns to disengage the moving contact from the stationary contacts, dielectric media (SF₆ gas) is compressed between the impeller and stator. The shell, phase barrier and rotor tube also act to confine the gas for proper compression and flow. The compressed SF₆ gas is directed through the nozzle into the arc zone. The SF₆ flows (is puffed) across the contacts and around the arc established by the separating contacts, cooling the arc over the length of the nozzle. The cooling action is increased by the higher pressure (due to compression) and the flow of gas which constantly provides a supply of cool SF₆ into the arc zone.

At current zero, the temperature of the arc is reduced to the point of deionization. The SF₆ gas rapidly recovers dielectric strength withstanding the system recovery voltage and preventing re-ignition of current across the contacts.

C. As the rotor tube assembly turns to engage the moving contact with the stationary contacts, the impeller induces a flow of SF₆ gas between the contacts to minimize pre-strike.
3-1/C, 600A QUICK-CHANGE APPARATUS BUSHINGS

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad (elbows must be ordered separately). Copper studs are available. For bottom entry switches, recommended switch frame height is 42" for all voltages.

3-1/C, 600A VOLTAGE SENSING BUSHINGS

G&W's Voltage Sensing Bushing (VSB) system is a temperature compensated, built-in, voltage measuring system that eliminates the need for PTs when three phase analog voltage monitoring is required. Compared to potential transformers, the VS bushing system offers these benefits:
- Significant cost savings
- Cleaner, less cumbersome installation
- Less space required
- Fewer add-on components which could potentially fail
- Installed and tested prior to shipment
- Can be field calibrated
- One digital output per way for threshold voltage detection

The VS bushing system utilizes a capacitively coupled screen which is embedded within the epoxy bushing. The low energy output of the screen is amplified by integral circuitry, resulting in a 0-120 VAC analog output suitable for direct connection to any relay, IED or RTU. The circuitry incorporates built-in calibration and temperature compensation which improve accuracy.

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad (elbows must be ordered separately). Bushings are bolt-on style. Copper studs are available. For bottom entry switches, recommended switch frame height is 42" for all voltages.

SPECIFICATIONS

Operating temperature:
-40°C to +65°C
Input voltage range (phase-to-phase):
10.7kV - 38kV
Nominal output voltage: 120 VAC

Analog voltage outputs: 3 or 6
Number of digital outputs: 1 or 2
Digital pick-up voltage:
90% of Vnom (on all phases)
Digital drop-off voltage:
75% of Vnom (on any phase)

Maximum burden (per output): 0.06VA
Voltage accuracy:
+/- 2% from 0°C to 65°C and +/- 5% from -40°C to 0°C.
Voltage signal delay: 1/2 cycle max

3-1/C, 600A / 900A APPARATUS BUSHINGS

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad for a 600A rating (elbows must be ordered separately). A copper conductor is available which extends the continuous current rating to 900A. For bottom entry switches, recommended switch frame height is 42" for all voltages. Welded flange bushings are available.
3-1/C, 200A DEEPWELL BUSHINGS

Bushings are designed to IEEE 386 standards with standard interface accepting deadbreak or loadbreak inserts and conventional elbow connectors (inserts and elbows must be ordered separately). A copper conductor is standard. For bottom entry switches, recommended switch frame height is 42" for all voltages. Welded flange bushings are available.

3-1/C, 600A APPARATUS BUSHINGS

WELDED FLANGE STYLE

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors. Bushings include a stainless steel flange and an aluminum conductor with 5/8"-11 aluminum threaded stud. Elbows must be ordered separately. 200A deepwell welded flange bushings are also available.

3-1/C, 600A UNIVERSAL BUSHINGS

The combination Universal Cable End and Universal bushing provides an extremely versatile interface between cable and equipment for easy connecting, disconnecting, and isolating of distribution cable circuits. End caps for both bushing and splice module permit dead-ending of the cable and equipment for fast cable sectionalizing if required.

Universal bushings are designed to accept G&W universal bushing cable ends (G&W Universal bushing cable ends must be ordered separately. See chart below). An aluminum conductor and aluminum single hole pad is standard. For bottom entry switches, recommended switch frame height is 36" for all voltages. Hi-pot test kits are available.

NOTE: Universal bushings can accept up to two G&W Universal bushing cable ends per phase. For applications requiring this feature, consult factory.

UNIVERSAL BUSHING CABLE ENDS (PER PHASE)

Complete cable data required before order can be processed.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminate 1 cable per phase</td>
<td>15CE</td>
</tr>
<tr>
<td>Terminate 2 cables per phase</td>
<td>15CE-CE</td>
</tr>
<tr>
<td>Dead End Kit</td>
<td>15DCE</td>
</tr>
<tr>
<td>Change 1 cable per phase to 2 cables per phase*</td>
<td>151V2</td>
</tr>
<tr>
<td>Change 2 cables per phase</td>
<td>152V1</td>
</tr>
</tbody>
</table>

*Kit includes second cable end (CE) and hardware necessary for connection.
For standard components, refer to typical specifications at www.gwlec.com under Support.

Gas Pressure Gauge and Fill Valve (Standard)
The pressure gauge is a “GO-NO-GO” style which is color coded to simplify verification of proper operating conditions. A Schraeder type fill valve permits refilling in the field. The gauge and fill valve are made of brass for corrosion resistance. Both components are protected by a steel guard.

Temperature Compensated Gas Density Gauge (Optional)
measures internal tank gas density for maximum precision of switch operating conditions. The gauge is colored coded to simplify reading by operating personnel.

Viewing Windows (Standard)
provide a means to visibly verify switch contact position. Single phase or three phase contact viewing is available.

Key Interlocks (Optional)
may be used as an added safety measure to prevent operation by unauthorized personnel or to assure safe coordination of energized equipment. Switches can be provided with provisions only (two maximum per operating mechanism) or with key interlocks factory installed. Specify locking scheme when ordering, i.e. lock in open, lock in closed or lock in both open and closed position. For key interlocks to be coordinated with other equipment, manufacturer’s information must be provided.

Ground Lugs (Optional)
are bronze, eyebolt style for 4/0 maximum conductor cable.

Auxiliary Switches (Optional)
can be included to provide remote indication of contact position. One N.O. and one N.C. contact is supplied and can be wired by G&W or the customer. A maximum of two auxiliary switches can be installed per operating mechanism.

Low SF₆ Remote Monitoring Devices:
1) **Low Pressure Warning Devices**
are factory set at 5 psig and permit remote indication of internal tank pressure. It can also be used for low pressure control lockout. One Form C contact is provided for wiring by the customer. **Recommended for installations where ambient temperature does not fall below 0°F (-15°C).**

2) **SF₆ Density Switches**
permit remote indication of internal tank gas density to assure proper pressure/temperature operating conditions. One Form C contact is provided for wiring by the customer. **Recommended for installations where ambient temperatures fall below 0°F (-15°C).**
G&W OVERCURRENT CONTROLS

The overcurrent control monitors the current and sends a trip signal which opens the vacuum interrupters and interrupts the fault current. G&W controls are self-powered from the current transformers (CTs) located inside the switch. Controls can also be equipped to accept a trip input from another device, such as a transformer overpressure sensor.

The standard control enclosure for padmount applications is fiberglass NEMA 4X (IP56) rated. An optional NEMA 6P (IP67) rated enclosure is available for applications where the possibility of flooding or short term submersion is possible. Optional enclosures and control designs are available for applications where short or long term submersion is possible.

OPERATION

Load and fault current are sensed by current transformers mounted internally around each bushing of the switch. The CTs also provide power to the control thus eliminating the need for an external power supply. Approximately 6-10 Amps per phase of load current is required for self-powering. If not present, the control is in sleep mode. The control will power-up and trip once that load is present (either normal load or during a fault). There will be an approximate 1/2 cycle delay for power-up in this case. In addition, a "READY" light is provided which flashes when the control is powered up by sufficient load current on the sensing CTs, or when the control is provided with external power. The incoming load or fault current is converted to a digital signal. The control constantly compares the measured current to the Time Current Characteristic (TCC) curve programmed into the memory. Based on the programmed settings, the control determines when to trip open the vacuum interrupter to interrupt the fault. All trip settings are in Minimum Trip Amperes. An approximate conversion of minimum trip to approximate fuse equivalent is provided. The VI Control can be tested in the field using primary or secondary current injection.

G&W CONTROL OPTIONS

Type 1 controls operate three, single phase vacuum interrupting mechanisms. The Type 1 can be field set for either single phase or three phase trip mode. It is used on switches with either single phase or three phase reset handles. When in the three phase mode, all three phases trip if the selected trip level of any individual phase is reached. Trip level selections can be made under load or no-load conditions with current ranges in 12 selectable levels. Two ranges of minimum trip settings are available, 15 to 300 Amps and 30 to 600 Amps. Each unit is pre-programmed with 30 user selectable Time Current Characteristic (TCC) curves. The curve selection can be set or changed while the switch is energized.

An 8 pole dip switch allows the user to choose the TCC that best matches their individual coordination requirements. A label provides a key for the dip switch settings. The control can be factory preset to meet the user’s requirements. As protection or coordination requirements change, settings can easily be changed while the switch is energized. Pressing the manual trip button when the control is powered up electronically trips all three phases of the vacuum interrupter. Each control also includes “Last Cause of Trip” LEDs. These LEDs indicate which phase experienced an overcurrent condition, or that the control was given an external or manual trip command.
Type 2 controls provide a user friendly interface for quick and easy programming. Trip level selections can be made under load or no-load conditions with current ranges in 12 selectable levels. Two ranges of minimum trip settings are available, 15 to 300 Amps and 30 to 600 Amps. Each unit is pre-programmed with 30 user selectable Time Current Characteristic (TCC) curves. The curve selection can be set or changed while the switch is energized.

An 8 pole dip switch allows the user to choose the TCC curve that best matches their specific coordination requirements. The control can be factory preset to meet the user’s requirements. As protection or coordination requirements change, settings can easily be changed in the field. Pressing the manual trip button when the control is powered up trips all three phases of the vacuum interrupter. Each control also includes “Last Cause of Trip” LEDs. These LEDs indicate what caused the control to issue a trip command - an over current condition, Ground Fault, Instantaneous, or an external or manual trip command.

Since the control is three phase only, one minimum trip level for all three phases is set via a single selector knob. The control has a built-in, adjustable phase time delay. The control also provides a ground fault (phase imbalance) feature with adjustable trip and time delay settings as well as instantaneous trip and inrush restraint features.

Features of Type 2 Control

Phase Time Delay

For applications requiring coordination with other protection devices, the Type 2 provides field selectable phase time delay capability. The phase time delay selector switch provides a phase delay range from 0 to 0.50 seconds before the programmed TCC time is initiated. This permits the user to select which protective device will trip the circuit first. The phase time delay allows sectionalizing schemes to be implemented while maintaining full line capacity throughout the circuit.

Ground Fault (Phase Imbalance)

The ground fault or phase imbalance feature continuously checks for phase imbalance or unequal currents in each of the three phases. Protection from this condition is a common requirement for large three phase motors or other sensitive loads. The ground fault trip current can be adjusted in the field by the user and is represented on the control panel as a percent (%) of the user programmed phase overcurrent minimum trip level. A time delay minimizes nuisance tripping caused by temporary phase imbalances. The Minimum Trip selector sets the desired trip level in amperes depending upon the desired protection scheme. The ground trip feature protects against high impedance faults and loss of phase.

Instantaneous Trip

The instantaneous trip multiplier aids in customizing the protection capabilities of the Type 2 control. The rotary switch has nine positions. The first position, OFF, disables this feature. The other positions (x1, x3, x5, x7, x9, x11, x13, and x15) affect how the Type 2 calculates the trip time for overcurrent conditions. When any phase exceeds the current value defined by the minimum trip setting times the instantaneous trip multiplier, the Type 2 will initiate a trip command to all three phases within half a cycle, 8.3 msec at 60 Hz (10 msec at 50 Hz).

Inrush Restraint

The inrush restraint function is helpful in preventing nuisance trips due to cold load pickup. The inrush restraint function is active when the Type 2 is initially powered up and will reactivate if the average three phase primary current drops below 7.5 Amps (15-300 Amp controls) or 15 Amps (30-600 Amp controls). The inrush restraint function consists of two selectable parameters, the Inrush Trip Multiplier (x1, x2, x3, x4, x5, x6, x7, x8, x9, x11, x13, and x15) and the Inrush Time Delay (0.00, 1.75, 3.25, 5.25, and 7.00 seconds).

The inrush trip multiplier increases the minimum trip value for the selected inrush time delay duration.
Type 3 and 4 controls provide advanced protection functions. There are two versions of these controls, each with different protection elements.

The Type 3 and 4 controls are each available in NEMA 4X or NEMA 6P control enclosures. Each control includes a programming port on the enclosure for programming via a notebook computer or for retrieving event reports.

In addition, the Type 3 includes a Vacuum Fluorescent Display to view present load currents, last cause of trip events, and the settings present within the control, without the need for a notebook computer.

Each control is available with either the EZset or Plus programming option. Refer to the table on Page 4.

The Type 3 and 4 controls record the most recent 16 Cause of Trip Events. The Type 3 EZset includes a display and keypad for entering programming parameters and viewing the Cause of Trip Events. The Type 3 Plus, and Type 4 EZset and Plus utilize a notebook computer programming kit to enter the settings. The notebook computer programming kit can also be used to download and store the settings and Cause of Trip Events.

Type 7 controls provide the same protection features and options as the Type 3 and 4 controls. For vault and subsurface applications, utilizing Trident® solid dielectric switchgear, G&W recommends the Type 7 control. The Type 7 is mounted within the switch’s mechanism housing and has an IP68 rating for long term submersion. This eliminates the need for a separate control enclosure and associated cabling. The control is programmed using a notebook computer. A notebook computer programming kit is available.

PROGRAMMING KIT

For Type 3, Type 4 or Type 7

Provides software and cable connection to a notebook computer for programming or retrieving fault interrupter control information. The cable connects the USB port of the computer to the control box (Type 3 or 4) or mechanism housing (Type 7).

Catalog Number for Type 3, Type 4, Type 7: LPK7-VICSS
<table>
<thead>
<tr>
<th>Feature</th>
<th>EZset</th>
<th>Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Selection</td>
<td>1 or 3 Phase</td>
<td>1 or 3 Phase</td>
</tr>
<tr>
<td>Minimum Trip</td>
<td>12 Set Points (Amps) 30, 40, 50, 70, 90, 120, 150, 200, 250, 350, 450, 600</td>
<td>30 – 900 Amps, Or 15 – 450 Amps 1 Amp increments</td>
</tr>
<tr>
<td>Phase Time Delay</td>
<td>12 Set Points (Seconds) 0, 0.03, 0.06, 0.10, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5</td>
<td>0 -10.0 Seconds, 0.01 Second increments</td>
</tr>
<tr>
<td>Instantaneous Setting</td>
<td>8 Multipliers 1, 3, 5, 7, 9, 11, 13, 15</td>
<td>Phase Min Trip to 12,000 Amps, 1 Amp increments</td>
</tr>
<tr>
<td>Inrush Setting</td>
<td>12 Multipliers 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15</td>
<td>15 Multipliers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15</td>
</tr>
<tr>
<td>Inrush Timer</td>
<td>5 Set Points (Seconds) 0, 1.75, 3.25, 5.25, 7.0</td>
<td>0.0 to 60.0 Seconds, 0.1 Second increments</td>
</tr>
<tr>
<td>Minimum Response Time</td>
<td>Settings (Seconds) 0, 0.05, 0.1, 0.145, 0.205, 0.26, 0.335, 0.405, 0.495, 0.58</td>
<td>0 – 10.0 Seconds, 0.01 increments.</td>
</tr>
<tr>
<td>Ground Fault Setting</td>
<td>10 Settings Off, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%</td>
<td>3 Amps – 50% of the Phase Min Trip, 1 Amp increments</td>
</tr>
<tr>
<td>Ground Fault Curve</td>
<td>Separate from Phase Curve</td>
<td>Separate from Phase Curve</td>
</tr>
<tr>
<td>Ground Fault Instantaneous</td>
<td>n/a</td>
<td>Ground Min Trip – 6,000 Amps, 1 Amp increments</td>
</tr>
<tr>
<td>Ground Fault Minimum Response Time</td>
<td>n/a</td>
<td>0 – 10.0 Seconds, 0.01 increments.</td>
</tr>
<tr>
<td>Ground Fault Time Delay</td>
<td>n/a</td>
<td>0 -10.0 Seconds, 0.01 Second increments</td>
</tr>
<tr>
<td>Ground Fault Inrush Setting</td>
<td>n/a</td>
<td>15 Multipliers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15</td>
</tr>
<tr>
<td>Ground Fault Inrush Timer</td>
<td>n/a</td>
<td>0.0 to 60.0 Seconds, 0.1 Second increments</td>
</tr>
<tr>
<td>Control ID</td>
<td>n/a</td>
<td>Device ID, Feeder Name/ Number, Other Information.</td>
</tr>
<tr>
<td>Protection Setting Method</td>
<td>VFD or Laptop</td>
<td>Laptop</td>
</tr>
<tr>
<td>Curves</td>
<td>30 Emulated Fuse and Electromechanical Relays</td>
<td>64 Emulated Fuse, Electromechanical Relays, C37.112 U1 – U5, and 5 User Created</td>
</tr>
</tbody>
</table>
Power Requirements

Powered by current from the current transformers

External Power Requirements (optional)

12-24 VDC (Standard), 48VDC, 120VAC, 220VAC

Type 1 or 2 Minimum Trip Setting Options (500:1 CT)

Type 1 or 2 Minimum Trip Setting Options (1000:1 CT)

Type 3, 4, of 7 Minimum Trip Setting Options

See table page 4

Enclosure

NEMA 4X or optional NEMA 6P

Frequency

60 Hz (Standard)

50 Hz (Optional)

Environment

Operating Temperature: -40°C to +65°C

Storage Temperature: -50°C to +85°C

Humidity: 10% to 95%

Type Tests:

Electrostatic Discharge Test

IEC 60255-22-2 Level 4 contact discharge

Radiated Electromagnetic Field Disturbance Test

IEC 60255-22-3 Level 3

Radiated Electromagnetic Interference

IEEE C37.90.2-1995 - 35V/m

Surge Withstand

IEEE C37.60

Vibration

OPTIONS
Select from the following options and add to the appropriate switch specification:

- Stainless steel tank, type 304
- Stainless steel enclosure, type 304 or 316
- Temperature compensating pressure gauge
- Low pressure warning device
- SF$_6$ density switch
- 4/0 brass ground lug
- Key interlock provisions
- Key interlocks to lock in open position
- Current transformers for load break ways
- Potential transformers for voltage monitoring and/or control power
- Automatic transfer control type ATC451-4
- Motor actuators for remote switch operation
- Auxiliary switches for remote switch position indication
- Stationary switch controls for remote switch operation and SCADA integration
- Portable switch controls for remote switch operation
- Remote terminal units and communication packages for SCADA integration
- Operation counters
- Voltage sensors with 120 VAC output or a contact to indicate presence of voltage
- 200A deepwell bushings
- 600A apparatus bushings
- 600A voltage sensing bushings
- 600A Quik-Change apparatus bushings
- 600A Universal bushings (through 25kV)
- Type 2 vacuum interrupter control including ground fault trip and time delay selector switches (three phase only)
- Type 3 vacuum interrupter control including ground fault trip, inrush restraint, programmable vacuum fluorescent display (VFD) and RS232/485 port
- Type 4 vacuum interrupter control (same as Type 3 with laptop programming only)
- Clear window cover for Type 1, Type 2, or Type 3 interrupter controls
- Submersible NEMA 6P enclosure for vacuum interrupter control
- SEL relays including 751A, 501, 551 and others
- External power / trip for vacuum interrupter control
- Refill kit consisting of regulator, hose and SF$_6$ bottle